
Journal of Novel Applied Sciences

Available online at www.jnasci.org

©2017 JNAS Journal-2017-6-2/39-51

ISSN 2322-5149 ©2017 JNAS

A Multistep Broyden’s-Type Method for Solving
System of Nonlinear Equations

M.Y.Waziri1*, M.A. Aliyu2 and A.Wakili3

1- Department of Mathematical Sciences, Faculty of Sciences, Bayero University, Kano, Kano State,

Nigeria
2- Department of Mathematical, Faculty of Scienves, Gombe State, Gombe State

3- Department of Mathematical Sciences, Faculty of Sciences, Federal University, Lokoja, Koji State,
Nigeria

Corresponding author: M.Y.Waziri

ABSTRACT: The paper proposes an approach to improve the performance of Broyden’s method for
solving systems of nonlinear equations. In this work, we consider the information from two preceding
iterates rather than a single preceding iterate to update the Broyden’s matrix that will provide sufficient
information in approximating of the Jacobian matrix in each iteration. Under some suitable assumption,
the convergence analysis is established. The numerical results verify that the proposed method has clearly
enhanced the numerical performance of Broyden’s Method.

Keywords: Multi-Step Broyden, nonlinear systems of equations, Performance profile.

INTRODUCTION

 Solving systems of nonlinear equations is becoming more essential in the analysis of complex problems in many
research areas. The problem considered is to find the solution of nonlinear equations

 (x) 0,F  (1)

Where : n nF D  has continuous first partial derivatives. The assumption here is there exist a vector

 * * * *

1 2, , , nx x x x
 with

 * 0F x 
 and

 * 0,F x 
 where

 kF x
 is the Jacobian matrix of F at kx is

assumed to be locally Lipschitz continuous at
*.x

Newton’s method is a well know method for solving (1). The method generates an iterative sequence
 kx

 from a

given initial guess 0x via

1

1 () ()k k k kx x F x F x


 

 (2)

where 0,1,2 .k 
However, despite the fact that the Newton’s method is simple to implement and has a quadratic rate of convergence,

still it requires the computation and storage of n n Jacobian matrix and its inverse, and also requires solving
systems of linear equations at each iteration. In practice, computations of some functions derivatives are quiet costly
and sometimes they are not available or could not be done precisely. In this case, Newton’s method cannot be used
directly.
It is imperative to mention that some efforts have already been carried out in order to reduce or eliminate the well-
known shortcomings of Newton’s method for solving systems of nonlinear equations. Such methods include Chord’s
Newton’s method, inexact Newton’s method, quasi-Newton’s method [13,12,11,7]. One of the widely used quasi-
Newton method for solving system of nonlinear equations is Broyden’s method [1]. The method approximates the

http://www.jnasci./

J Nov. Appl Sci., 6 (2): 39-51, 2017

40

Jacobian matrix and its inverse by a derivative free matrix (known as Broyden’s matrix) and therefore calculating the
derivative in every iteration is avoided.
Broyden’s method uses the information from the last iterate to compute the current point which makes it has lesser
information of the previous iterates. It will be nice if we can incorporate the information of the last two or more iterates
and update the Broyden’s matrix. By doing this, the Broyden matrix will have sufficient information from the previous
iterates and hence improve the accuracy of the Jacobian approximation. This motivated the paper.
Waziri et al [10] incorporated the concept of two-step into diagonal updating and solve system of nonlinear equations
and they succeeded in enhancing the method developed by Leong et al [15]. The main reason for developing this
approach is to improve the accuracy Broyden’s matrix via multi-step in which we use the information from two
preceding iterates to compute the current point. This paper is organized as follows: the next section describes our
new approach; section 3 gives the convergence analysis of our proposed method. The numerical results are
presented in section 4 and the conclusion is given in section 5.

1. MULTI-STEP BROYDEN-LIKE APPROACH

This section describes our new multi-step Broyden-like approach which generates a sequence of vectors
 kx

 via

 1

1 ,k k k kx x B F x

  
 (3)

Where kB
 is the Broyden approximation of the Jacobian matrix updated in each iteration via multi-step approach.

Our target is to come up with a matrix kB
 through a Broyden updating scheme. To achieve this, we make use of an

interpolating curve in the variable space to develop a modified secant equation which was derived initially by Dennis
and Wolkowicz [3]. This is made possible by considering some of the most successful two-step methods [5,4,9,6] for
more detail. Through integrating this two-step information, we can present an improve secant equation as follows:

 1 1 1k k k k k k kB s s y y     

 (3)

By letting 1k k k ks s   
 and 1k k k ky y   

 in (4), we have

 ,k k kB  
 (4)

Since we incorporate the information from the last two preceding iterations instead of a preceding iteration in (4) and

(5), we require to build an interpolating quadratic curves
 x v

 and
  ,y v

 where
 x v

 interpolates the last two

preceding iterates 1kx  and
,kx and

 y v
 interpolates the last two preceding function evaluation 1kF  and

.kF

Using the approach introduced in [5], the value of k in (4) can be determine by computing the values of 0 1,v v
 and

2.v
 By letting 2 0,v 

 

2

0j j
v


 can be computed as follows:

 

1 2 1

2 1

1

1

2

 = () ()

 =

 =

 =

k

k

k

k k

k

T

k k k

v v v

x v x v

x x

s

s B s



  





B

B

B

 (5)

J Nov. Appl Sci., 6 (2): 39-51, 2017

41

    

0 2 0

2 0

1 1

1

1

2

1 1

 = () ()

 =

 =

 =

k

k

k

k k

k k

T

k k k k k

v v v

x v x v

x x

s s

s s B s s

 



 

  







 

B

B

B

 (6)

Let us define k by

2 0

1 0

,k

v v

v v






 (7)

Therefore k and k can be computed by the following relations

2

1,
1 2

k
k k k

k

s s





 


 (8)

2

1,
1 2

k
k k k

k

y y





 


 (9)

That is, k in (4) is given by
 2 1 2 .k k k   

Using the same approach as in [10] and considering the Broyden’s

update as in [8], the Multi-Step Broyden’s matrix is obtained as

 
1

T

k k k k

k k T

k k

B
B B

  

 



 

 (10)
Now, the algorithm for our method is as follows;

Algorithm 2.1 (Multi-Step Broyden’s method (MSBM))

0 1: : 0 nStep Choose an initial guesss B I and lett ke  

4 2 : (). () , 10 .k kStep Compute F x If F x stop where   

1

1 0 0 0 3: : 0 (). : 1 5.k k k kStep If k define x x B F x Else if k set s and y and go to      

1 0

4

2 2

 4 : 2 , (6) (8) (9) (10)

 . 10 .

k k k

T

k k k k k k k k

Step If k compute v v and via respectively and find and using and

respectively If set s and y

  

     

 

  

1

1 1 5: () (11).k k k k kStep Let x x B F x and update B as defined by

  

1 1 .2
v6 : , , 5. , k k k kStep Check if if yes retain B that is computed by step Else set B B    

 7: : 1 2.Step Set k k and go to 

2. CONVERGENCE ANALYSIS

This section discusses the convergence analysis of our method. The following theorem is stated without proof as it
will be useful in proving the superlinear convergence of the Multi-step Broyden update.

Theorem 3.1 [14]. Let : n nF  be continuously differentiable in an open, convex set D in ,n

 and assume

that for some
*x in D, F  is continuous at

*x and ()F x
 is nonsingular. Let kB

 in
 nL

 be a sequence of

J Nov. Appl Sci., 6 (2): 39-51, 2017

42

nonsingular matrices and suppose for some 0x in D the iterates generated by
1

1 (),k k k kx x B F x

  
 kx remains in

D and converges to
*x at a superlinear rate if and only if

 '

1

1

()
lim 0.

k k k

k
k k

B F x x x

x x








   




Now, we show the superlinear convergence of our method

Theorem3.2 Let : n nF  be continuously differentiable function in an open convex set .C Assume that there

exist positive constants and  such that
0x x  

 and

'

0 () .B F x  
 Then the sequence

 kx

generated by Multi-step Broyden’s update

1

1 ()k k k kx x B F x

  
 (11)

 
1

T

k k k k

k k T

k k

B
B B

  

 



 

 (12)

is well define and convergence to
*x superlinearly.

Proof: By theorem (3.1), it is enough to show under the conditions of the theorem that

 '

1

1

()
lim 0

k k k

k
k k

B F x x x

x x








   



 (13)

From (12) and (13),

 

   

 
 

1 () ()

() ()
 = ()

()
 = ()

T

k k k k

k k T

k k

T T

k k k k k k k

k T T

k k k k

TT
k k kk k

k T T

k k k k

B
B F x B F x

F x B F x
B F x

F x
B F x I

  

 

     

   

   

   

 



 








    

  
  

 
   

  (14)
Taking norms on both sides gives

1

()
() ()

T
k kk k

k k T

k k k

F x
B F x B F x I

  

  



 

 


    

 (15)
Since

1
T

k k

T

k k

I
 

 
 

 (16)

And by the fact that
 () () ()()

2
F u F v F x u v u x v x u v


       

We have

 1 1() () () ()

2
k k k k k k k kF x F x F x F x x x x x


      

 
        

 (17)

Hence
 1 1() () .

2
k k k kB F x B F x x x x x

   

 
       

J Nov. Appl Sci., 6 (2): 39-51, 2017

43

Now let
().k kE B F x 

 From (16), we have

 
1

()

T
T

k k k
k k F

k k T TF
k k k kF

F x
E E I

   

   





 
   

 
 (18)

Since

   

 

2

4

2 2 2

2

4 4 2

 =

 = =

T
T T T

k k k k k k k k
k T T T

k k k k k kF

T T

k k k k k k

k

k k k k k kT

k k k

k k k

E E
E tr

E E
tr

E E E
tr

     

     

   



  
  

  

  
   
   

 
 
  



And

=
T T T T

k k k k k k k k
k k k k k kT T T T

k k k k k k k k

E E E E E E I
       

       

 
     

 

We get

  ,
T T

k k k k
k k kT T

k k k k

tr E tr E E I
   

   

  
    

    that is,

22

2
T T

k k k k
k k kT TF

k k k kF F

E E E I
   

   

 
   

 

Therefore

22

2

2

T
k k k k

k k TF
k kk F

E
E E I

  

 

 
   

 

Hence

1 2
2

2

2

T
k kk k

k kT F
k k kF

E
E I E

 

  

  
          (19)

Since
 

2
2 2

2


  


  

 for any
0,  

 (20) implies that

2

2
.

2

T
k kk k

k kT F
k k k kF F

E
E I E

E

 

  

 
   

 
 (20)

Now, by using (21), (18), and the fact that

1

1
 0.

2
k kx x x x k 

     
 (21)

We can write (19) as

2

1 2

3
,

42

k k

k k kF F

k kF

E
E E x x

E








    

 which is

2

12

3
2

4

k k

k k k kF F F

k

E
E E E x x










 
    

 
 (22)

J Nov. Appl Sci., 6 (2): 39-51, 2017

44

But from
 () 2 2 k

kB F x    
 and (22), we have that

2 , 0k F
E k  

 and 0

2 .k

k

x x 






 
 Thus,

(23) can be written as

2

12

3
4 .

4

k k

k k kF F

k

E
E E x x


 







 
    

 
 (23)

By summing both sides, we obtain

2

0 12
0 0

0

0

3
4

4

3
 4

2

3
 4 ,

2

i i
k k

i kF F
k kk

F

F

E
E E x x

E

E


 



 

 





 

 
    

 

 
  

 

 
  

 

 

Which hold 0.i  Therefore

2

2
0

 0
k k k k

k kk

E E 







   
 as .k  Hence the proof is complete.

3. NUMERICAL RESULTS
In this section, we analyze and compare the performance of MSBM with that of Newton’s method NM, Fixed Newton’s
method FNM and Broyden’s method BM for solving systems of nonlinear equations. The algorithms are written in
MATLAB7.10.0 (R2010a) and are tested for some classical benchmark problems. All the problems were run on a PC
with AMD E1-1200APU with Radeon(tm) CPU with 2.00Ghz speed. To describe the results of these experiments we
give the dimension of problem (N), the number of iterations performed(NI) and the CPU time (seconds).
We declare a termination of the methods whenever,

4() 10kF x 
 (24)

The identity matrix has been chosen as an initial approximate Jacobian.

The symbol " " is used to indicate a failure due to:

(1) The number of iteration is at least 500 but no point of kx that satisfies (12) is obtained;
(2) CPU time in second reaches 500;
(3) Insufficient memory to initiate the run.
Dolan and More´[2] gave a new tool of analyzing the efficiency of Algorithms. They introduced the notion of a
performance profile as a means to evaluate and compare the performance of set of solvers S on a set P. Assuming

there exist ns solvers and np problems, for each problem p and solvers s, they defined ,p st 
computing time (the

number of function evaluations or others) required to solve problem p by solvers s.
Requiring a base line for comparisons, they compared the performance on problem p but solver s with the best
performance by any solver on this problem; using the performance ratio

,

,

,min :

p s

p s

p s

t
r

t s S



 (25)

Suppose that a parameter ,M p sr r
 for all

,p s
 is chosen, and ,p s Mr r

 if and only if s does not solve problem p.
The performance of solver s on any given problem might be of interest, but we would like to obtain an overall
assessment of the performance of the solver, then they defined

,

1
() :s p s

p

t sizep P r t
n

   

 (26)

J Nov. Appl Sci., 6 (2): 39-51, 2017

45

Thus
()s t

 is the probability for solver s S that a performance ratio ,p sr
 is within a factor t R of the best

possible ration. Then function s is the (cumulative) distribution function for the performance ration. The

performance profile
 : 0,1s R 

 for a solver is a nondecreasing, piecewise constant function, continuous from

the right at each breakpoint. The value of
(1)s is the probability that the solver win over the rest of the solvers.

According to the above rules, we know that one solver whose performance profile plot is on the top right will win over
the rest of the solvers.
Below are the benchmarks problems used to test the proposed methods in this research.
problem 1(Artificial Function)

   2

0() cos 1 1, 1,2, , and 0.5, 0.5, , 0.5
T

i if x x i n x       

problem 2(Trigonometric system of Beyong, 2010)

 0() cos 1, 1,2, , and 0.5, 0.5, , 0.5
T

i if x x i n x      

problem 3(Beyong et al, 2010)

 

1

1 0

() 1,

() +1, 1,2, , and 0.5,0.5, ,0.5

i i i

T

n n

f x x x

f x x x i n x

 

  

problem 4(Artificial Function)

     0() sin cos cos 1 , 1,2, , and 0.5,0.5, ,0.5
T

i i i i i i if x x x x x x x i n x     

problem 5(Beyongetal, 2010)

 2

0() 1, 1,2, , and 0.5,0.5, ,0.5
T

i if x x i n x   

problem 6

   

         

1 2 2 1

1 0

() sin 4exp 2 2 ,

() sin 2 4exp 2 2 +cos 2 exp 2 , 1,2, , and 0.5,0.5, ,0.5

i

T

n i i i i

f x x x x x

f x x x x x x i n x

    

         

problem 7(Artificial Function)

     2

1 0() 1 1 2 2, 1,2, , and 0.5,0.5, ,0.5
T

i i i i n n nf x x x x x x x i n x       

problem 8(Darvishi and Shin, 2011)

 0() 1, 1,2, , and 0.5,0.5, ,0.5i
Tx

if x e i n x   

problem 9(Artificial Function)

 

1 1

1 0

() ,

() cos + 1, 1,2, , and 2,2, ,2
T

i i i

f x x

f x x x i n x



   

problem 10(Beyong, 2011)

 2

0() 4, 1,2, , and 2.5,2.5, ,2.5
T

i if x x i n x   

problem 11(Beyong, 2011)

 2

0() 2, 1,2, , and 0.5,0.5, ,0.5
T

i i if x x x i n x    

problem 12(Artificial Function)

 

   

2

1
1 1

2

1
1 0

() 4 2 ,
3

() 4 2 , 1,2, , 1 and 0.5,0.5, ,0.5
3

i
i i i

Tn
n n n n

x
f x x x x

x
f x x x x i n x







 
    

 

 
       

 

J Nov. Appl Sci., 6 (2): 39-51, 2017

46

problem 13(Artificial Function)

     2

0() 3 log 3 9, 1,2, , and 0.9,0.9, ,0.9
T

i i i if x x x x i n x      

problem 14(Artificial Function)

 

2

1

1 1 1

0

() cos 9 3 8 ,

() cos 9 3 8 , 1,2, , and 0.5,0.5, ,0.5i

x

Tx

i i i

f x x x e

f x x x e i n x

   

     

problem 15(Artificial Function)

   
2 2

1 0() 0.5 0.25 1, 1,2, , and 0.5,0.5, ,0.5
T

i i n i if x x x x i n x       

problem 16(Hafizand Baghat, 2012)

   2

0() cos 1 , 1,2, , and 0.5,0.5, ,0.5
T

i i if x x x i n x    

problem 17(Artificial Function)

 0

sin
() 3 0.66 2, 1,2, , and 0.5,0.5, ,0.5

3

Ti
i i i

x
f x x x i n x

 
      

 
problem 18(Artificial Function)

     2

0() exp 1 cos 1 , 1,2, , and 0.5,0.5, ,0.5
T

i i if x x x i n x     

problem 19(Artificial Function)

   
2

2

0() 1 2, 1,2, , and 0.5,0.5, ,0.5
T

i if x x i n x    

Problem20(Rooseetal.,1990)

 
2

02
1 1

1
() + , 1,2, , and 0.5,0.5, ,0.5

n n
T

i i i i

i i

f x x x x n i n x
n  

   
       

   
 

Problem21(System of n nonlinear equations)

     0

1 1

() 3 cos 2 + sin 2 , 1,2, , and 2,2, ,2
n n

T

i i i i

i i

f x n x x x i n x
 

   
         

   
 

Problem22(Trigonometric System)

 

   

2

1 1 1 1 2

2

1 0

() 3 1 cos ,

() 3 1 cos , 1,2, , and 0.5,0.5, ,0.5
T

i i i i i

f x x x x x

f x x x x x i n x

    

      

problem 23(System of n nonlinear equations)

 

2 2

1

2 2

1 0

() 0.1 ,

() 0.1 , 1,2, , and 0.5,0.5, ,0.5

i i i

T

n i

f x x x

f x x x i n x

 

   

Problem24(System of n nonlinear equations)

   
2

0

1

1 1
() cos sin 1 1 , 1,2, , and 0.5,0.5, ,0.5

n
T

i i i n i i i

i

f x x x x x x x i n x
n n 

  
           

   


Problem25(System of n nonlinear equations)

 

 

 

 

2

1 1 2 1

2

1

2

1

0

() 2 log cosh 1 1,

 () 2 log cosh 1 1,

() 2 log cosh 1 1,

1
1, 2, , 0.5,0.5, ,0.5 10 and

1

i i i i

n n n n

T

f x x x uh x

f x x x uh x

f x x x uh x

i n x u h
n





      

      

      

   


J Nov. Appl Sci., 6 (2): 39-51, 2017

47

Below we give the tables and graphs that show the performance of Multi-step Broyden method in comparison with
Newton method (NM), Broyden’s method (BM) and Fixed Newton method (FNM). We denote by MSBM the method
define in algorithm (2.1).

Table1. Numerical Results of the methods when solving problems 1-6
 NM FNM BM MSBM

Problems N NI CPU Time NI CPU Time NI CPU Time NI CPU Time

P1 25 14 0.0547 - - 6 0.0001 4 0.0001

50 14 0.1388 - - 6 0.0312 4 0.0312

100 15 0.362 - - 6 0.1872 4 0.0468

500 16 17.9348 - - 7 1.2168 6 1.4196

1000 16 133.2068 - - 7 6.2088 6 7.1604

P2 25 15 0.0564 - - 10 0.0312 8 0.0312

50 16 0.1226 - - 10 0.0468 8 0.0312

100 16 0.3777 - - 11 0.156 8 0.1572

500 - - - - 11 1.8408 8 1.638

1000 - - - - 12 10.2337 8 8.5489

P3 25 5 0.0194 - - 5 0.0312 3 0.0001

50 - - - - 5 0.0648 3 0.0312

100 - - - - 5 0.0936 4 0.0314

500 - - - - 5 0.7644 4 0.9828

1000 - - - - 5 3.6348 4 4.524

P4 25 - - 15 0.0639 3 0.0312 2 0.0001

50 - - 16 0.1475 3 0.0312 2 0.0013

100 - - 16 0.5388 3 0.0312 2 0.0312

500 - - 17 18.5478 4 0.5928 3 0.7176

1000 - - 18 137.7307 5 3.4788 3 3.5568

P5 25 5 0.017 - - 5 0.0156 3 0.0312

50 5 0.0558 - - 5 0.0312 3 0.0312

100 5 0.1403 - - 5 0.0936 4 0.0468

500 5 5.601 - - 5 0.8112 4 0.8736

1000 5 40.1397 - - 5 3.5412 4 4.6956

P6 25 5 0.023 - - 7 0.0468 6 0.0312

50 5 0.0684 - - 7 0.156 6 0.0312

100 5 0.1726 - - 6 0.1092 5 0.156

500 5 5.5923 - - 7 1.17 5 1.1544

1000 5 38.6409 - - 6 4.7112 5 5.772

Table 2. Numerical Results of the methods when solving problems 7-13
 NM FNM BM MSBM

Problems N NI CPU Time NI CPU Time NI CPU Time NI CPU Time

P7 25 10 0.0425 - - 9 0.0159 9 0.0312

50 10 0.1325 - - 9 0.0312 9 0.0468

100 10 0.2773 - - 9 0.0624 9 0.0624

500 10 11.4329 - - 9 1.3572 9 1.872

1000 10 83.1567 - - 9 7.3008 9 9.8125

P8 25 4 0.0185 11 0.011 5 0.0312 4 0.0312

50 - - 12 0.0167 5 0.0312 4 0.0312

100 5 0.1294 12 0.0278 5 0.0312 4 0.0312

500 5 5.3991 13 1.2127 5 0.7958 4 0.9516

1000 5 40.5085 13 8.4702 5 3.5256 4 4.6332

P9 25 5 0.0179 23 0.0064 11 0.0312 12 0.0312

50 5 0.056 23 0.0195 11 0.0312 12 0.0312

100 5 0.1683 23 0.0361 11 0.1872 11 0.078

500 5 5.5744 24 1.3178 13 2.2308 12 2.3712

1000 5 40.8677 24 9.1042 14 12.5581 - -

P10 25 4 0.0143 8 0.0053 7 0.0312 7 0.0156

50 4 0.0435 8 0.0091 7 0.0312 7 0.0312

100 4 0.1807 8 0.035 7 0.1248 7 0.0312

500 4 4.3721 8 1.1657 7 1.1856 7 1.482

1000 4 31.5299 8 8.141 7 5.4756 7 7.8157

P11 25 4 0.0148 16 0.0563 6 0.0312 4 0.0156

50 4 0.0301 17 0.0134 6 0.0312 4 0.0312

J Nov. Appl Sci., 6 (2): 39-51, 2017

48

100 4 0.1523 17 0.0946 6 0.1092 4 0.0468

500 5 5.4596 18 1.1769 6 0.9984 4 0.9516

1000 5 36.5684 19 7.981 6 4.5708 4 4.6488

P12 25 4 0.0178 6 0.0067 5 0.0624 3 0.0001

50 4 0.0397 6 0.0106 5 0.1404 3 0.0156

100 4 0.1547 7 0.0266 5 0.1404 3 0.0312

500 4 4.2022 7 1.0869 5 0.7488 3 0.6864

1000 4 30.5035 7 7.6241 5 3.4164 3 3.6036

P13 25 4 0.0298 8 0.0098 6 0.0021 5 0.0012

50 4 0.0379 8 0.0326 6 0.0936 5 0.0312

100 4 0.1263 8 0.0379 6 0.1248 5 0.0468

500 4 4.7032 8 1.2449 6 0.936 5 1.0764

1000 4 32.4366 8 8.7337 6 4.7892 5 5.7408

Table 3. Numerical Results of the methods when solving problems 14-20
 NM FNM BM MSBM

Problems N NI CPU Time NI CPU Time NI CPU Time NI CPU Time

P14 25 - - - - 8 0.0312 7 0.0312

50 - - - - 9 0.0624 7 0.0624

100 - - - - 9 0.078 7 0.0624

500 - - - - 9 1.5756 7 1.56

1000 - - - - - - 7 7.8625

P15 25 6 0.0357 - - 6 0.0312 - -

50 6 0.0739 - - 6 0.0312 - -

100 6 0.1593 - - 6 0.0468 - -

500 6 6.7031 - - 6 0.9672 - -

1000 6 48.1997 - - 6 4.5552 - -

P16 25 6 0.0221 - - 5 0.0468 3 0.0156

50 6 0.0464 - - 5 0.0468 3 0.0312

100 6 0.1459 - - 5 0.0468 4 0.0312

500 6 0.0793 - - 5 0.6864 4 0.936

1000 6 48.0269 - - 5 3.6348 4 4.6956

P17 25 5 0.0439 - - 5 0.0156 4 0.0156

50 5 0.0572 - - 5 0.0312 4 0.0312

100 5 0.1859 - - 5 0.0312 4 0.0936

500 5 5.5123 - - 5 0.7332 4 0.9984

1000 5 41.1653 - - 5 3.5412 4 4.9296

P18 25 - - - - 6 0.0468 5 0.0021

50 - - - - 6 0.156 6 0.0312

100 - - - - 6 0.1872 6 0.0624

500 - - - - 7 1.0764 6 1.2948

1000 - - - - 7 5.46 6 6.8172

P19 25 - - - - - - 6 0.0021

50 - - - - - - 6 0.0156

100 - - - - - - 6 0.0624

500 - - - - - - 6 1.2636

1000 - - - - - - 6 6.63

P20 25 4 0.0231 5 0.0728 6 0.0156 6 0.0156

50 3 0.0263 5 0.0145 6 0.0312 5 0.0312

100 3 0.1607 4 0.0292 6 0.0624 5 0.0312

500 3 3.3761 4 1.18837 6 1.0452 4 0.936

1000 3 25.6012 4 8.3199 6 4.7736 4 4.9296

J Nov. Appl Sci., 6 (2): 39-51, 2017

49

Table 4. Numerical Results of the methods when solving problems 21-25
 NM FNM BM MSBM

Problems N NI CPU Time NI CPU Time NI CPU Time NI CPU Time

P21 25 8 4.8507 - - 6 0.0468 4 0.0156

50 - - - - 6 0.0624 4 0.0312

100 - - - - 6 0.0624 4 0.078

500 - - - - 7 1.1544 5 1.1544

1000 - - - - 7 5.6472 5 5.772

P22 25 5 0.0222 14 0.0065 7 0.0312 6 0.0156

50 5 0.0495 15 0.013 7 0.0312 6 0.0312

100 5 0.1478 15 0.0875 7 0.0468 - -

500 5 5.6137 16 1.2321 7 1.1856 - -

1000 5 40.3162 17 8.5024 7 5.9592 - -

P23 25 4 0.0887 6 0.0145 3 0.0312 2 0.0056

50 4 0.0325 6 0.0167 3 0.0312 2 0.0156

100 4 0.1196 6 0.0624 3 0.156 2 0.0312

500 4 4.577 7 1.1505 3 0.5304 2 0.5148

1000 4 31.7271 7 8.1876 4 2.8236 2 2.73

P24 25 5 0.0261 - - 6 0.0003 5 0.0002

50 5 0.0689 - - 6 0.0312 5 0.0156

100 5 0.1929 - - 6 0.1872 5 0.0468

500 5 5.9576 - - 6 0.9828 5 1.092

1000 5 41.2697 - - 7 5.4756 5 5.5692

P25 25 4 0.0187 5 0.006 4 0.0156 3 0.0156

50 3 0.0308 4 0.0113 4 0.0312 2 0.0312

100 3 0.1082 4 0.0598 3 0.0312 2 0.0312

500 3 3.4229 3 1.199 3 0.4994 2 0.5928

1000 3 24.9551 3 8.3628 3 2.0904 2 2.9016

Figure 1. Performance profile of NM, FNM, BM and MSBM methods in term of Number of Iteration

J Nov. Appl Sci., 6 (2): 39-51, 2017

50

Figure 2. Performance profile of NM, FNM, BM and MSBM methods in term of CPU time

In the above figures, the left axis of the plot represents the percentage of the test problems for which a method is the
best, while the right side corresponds to the percentage of the test problems that were successfully solved by these
methods. Figure1 and 2 represent the performances profile in terms of the number of iteration and CPU time
(seconds) respectively.
 Tables 1−3 and figures 1 and 2 have shown that using the two-step approach in building the Broyden’s updating
scheme has significantly enhanced the performance of the classical Broyden method. This observation is glaring
when considering CPU time and number of iterations (NI). In addition, it is worth mentioning that the result of MSBM
in solving problem7, when the dimension increases, shows that our new approach becomes a better candidate.

5. CONCLUSION
 In this paper, we have presented a new method (MSBM) for solving system of nonlinear equations. Unlike the
single step, the method employs a two-step to update the non-singular Broyden’s matrix in approximating the
Jacobian matrix. Numerical experiments shown strong indication that our new approach requires less computational
cost and number of iterations as compared to the NM, FNM and BM methods. Hence, we can wind up that our
method (MSBM) is a better candidate when compared with NM, FNM and BM methods in solving system of nonlinear
equations.

REFERENCES

[1] C.G. Broyden. A class of methods for solving nonlinear simultaneous equations. Math. Compute. 19:577–593, 1965.
[2] E.D. Dolan and J.J. More. Benchmarking optimization software with performance profiles. Math. Program. Ser, 91:201–213,

2002.
[3] Jr.J.E. Dennis and H. Wolkowicz. Sizingand least-change secant methods. SIAM Journal on Numerical Analysis, 30(5):1291–

1314, 1993.
[4] I.A. Moghrabi J.A.Ford. Multi-step quasi-newton methods for optimization. J. Compute. Appl. Math., 50:305–323, 1994.
[5] I.A. Moghrabi J.A. Ford. Alternating multi-step quasi-newton methods for unconstrained optimization. J. Compute. Appl. Math.,

82:105–116, 1997.
[6] S. Tharmlikit J.A. Ford. New implicite updates in multi-step quasi-newton methods for unconstrained optimization. J.Comput.

Appl. Math., 152:133–146, 2003.
[7] M. Mamat K. Muhammad and M.Y. Waziri. Abroyden’slike method for solving systems of nonlinear equations. World Applied

Aciences Journal, 21:168–173, 2013.
[8] C.T. Kelly. Solving nonlinear equations with Newton’s method. SIAM, 2003.
[9] W.J. Leong M. Faridand M.A.Hassan. Anew two-step gradient-type method for large- scale unconstrained optimization,

computers and mathematic switch applications. Computers and Mathematics with Applications, 59(10):3301–3307, 2010.

[10] W.J. Leong M.Y. Waziri and M. Mamat. A two-step matrix-free secant method for solving large-scale systems of nonlinear
equations. Journal of Applied Mathematics, doi:10.1155/2012/348654 (Article ID: 348654):9pages, 2012.

[11] K.Natasa and L.Zorna. Newton-like method with modification of the right-hand vector. Journal of Computational Mathematics,
(17):237–250, 2011.

J Nov. Appl Sci., 6 (2): 39-51, 2017

51

[12] C.S.Eisenstat R.S.Demboand T Steihaug. Inexact newton method. SIAM JNumer.Anal., 19(2):400–408,1982.
[13] J.E. Dennis R.B.Jr. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall,

Englewood Cliffs, NJ, 1983.
[14] S.WENYU and Y.YUAN. Optimization Theory and Methods. Springer Optimization and Its Applications, 2006.
[15] M.Y. Waziri W.J.Leong and M.A. Hassan. A matrix-freequasi-newton method for solving nonlinear systems. Comput. Math.

Appl., 62:2354–2363, 2011.

